Advanced Research Projects Agency Energy

Title Due Date Maximum Award Amount Sort descending Description
ARPA-E AND ENVIRONMENTAL SECURITY TECHNOLOGY CERTIFICATION PROGRAM DEMONSTRATION PARTNERSHIP 2.0 $2,000,000.00

ARPA-E supports high-potential, high-impact energy technologies that are too early for private-sector research investment. For its part, ESTCP demonstrates and validates promising technologies that target DoD’s urgent environmental and installation energy needs and are projected to pay back the capital investment through cost savings, improved efficiencies, or other improved outcomes. The complementary nature of these missions has led to this partnership to demonstrate ARPA-E supported technologies at DoD installations, with ARPA-E providing technologies and funding and ESTCP providing access to DoD’s installations and expertise in conducting demonstration projects. The projects funded by this FOA will respond to high priority DoD installation energy technology requirements and the need to improve Defense readiness by reducing facilities’ operation and maintenance costs and improving energy security. The goal is to conduct demonstrations to validate the performance and operational costs of promising energy efficiency and security technologies; to provide any data needed for end-user acceptance; and, to accelerate the commercialization of the technology. These demonstrations will be conducted under operational conditions at DoD facilities or locations for which DoD holds responsibility. Candidate technologies are expected to have successfully completed laboratory testing and, when applicable, initial small-scale field testing. The demonstrations are intended to generate supporting cost and performance data for acceptance or validation of the technology. As appropriate, these projects should also support the future implementation of the tested technology through the development of appropriate guidance, design, and/or protocol documents. This program will not support full-scale demonstrations that are primarily intended to solve an individual installation’s problem; priority will be given to those projects that address multi-Service or DoD-wide requirements. These projects must: 1. Execute the technology demonstration to validate the technology’s performance and expected operational costs: • Each project must develop Pre-Demonstration and Demonstration Plan, to govern the technical execution and management of the demonstration. Guidance describing the requirements of the Demonstration Plans can be found on the ESTCP website (https://www.serdp-estcp.org/Investigator-Resources/ESTCP-Resources/Demo…). The Demonstration Plans must be reviewed and approved by ARPA-E prior to beginning any work at the installation. • Each project is expected to generate sufficient pertinent and high quality data to scientifically validate all claims made for that technology.• Cost and performance data will be collected and shared with ARPA-E and DoD during and after the demonstration(s) to allow realistic estimates to be derived for full-scale implementation of the technology at the demonstration site and other DoD sites.2. Transition the technology:• Develop a Technology Transition Plan and submit it to ARPA-E for approval. Guidance on the Technology Transition plan can be found on the ESTCP website. (https://www.serdp-estcp.org/Investigator-Resources/ESTCP-Resources/Demo…)• Identify and work with the intended DoD user community to achieve their acceptance and feedback on the usefulness of the technology.• Publish appropriate user guidance, design, and/or protocol documents to assist the future implementation of the technology.• Publish a Final Report that will be publicly available and contain the demonstration test data. • Publish the results of the demonstration in the scientific peer reviewed literature and present results at technical conferences, as appropriate.• Identify pathways to implementation of the technology. 3. Provide data and support to achieve regulatory and end-user acceptance:• Technologies needing regulatory approval for use will be required to engage the regulatory community at the outset of project execution. Feedback from regulators must be solicited and incorporated into the project’s Demonstration Plans. • No single approach for working with the regulatory community is prescribed by the program. Interaction with individual state regulatory organizations, interstate groups, and the U.S. Environmental Protection Agency (EPA), as needed, is encouraged. The approach taken should be appropriate for the technology being demonstrated and the regulatory issues associated with implementing the technology. Applicants selected for demonstration will be teamed with a DoD liaison who will be responsible for assisting in selecting the demonstration site, validating the technology’s cost and performance, interfacing with the regulatory and user community, and supporting the transfer of the technology across DoD.

https://www.grants.gov/web/grants/view-opportunity.html?oppId=332124
Funding Opportunity Announcement DE-FOA-0002784: Exploratory Topics $2,500,000.00

To obtain a copy of the Funding Opportunity Announcement (FOA) please go to the ARPA-E website at https://arpa-e-foa.energy.gov. To apply to this FOA, Applicants must register with and submit application materials through ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/Registration.aspx). For detailed guidance on using ARPA-E eXCHANGE, please refer to the ARPA-E eXCHANGE User Guide (https://arpa-e-foa.energy.gov/Manuals.aspx). ARPA-E will not review or consider concept papers submitted through other means. For problems with ARPA-E eXCHANGE, email ExchangeHelp@hq.doe.gov (with FOA name and number in the subject line). Questions about this FOA? Check the Frequently Asked Questions available at http://arpa-e.energy.gov/faq. For questions that have not already been answered, email ARPA-E-CO@hq.doe.gov. Agency Overview: The Advanced Research Projects Agency – Energy (ARPA-E), an organization within the Department of Energy (DOE), is chartered by Congress in the America COMPETES Act of 2007 (P.L. 110-69), as amended by the America COMPETES Reauthorization Act of 2010 (P.L. 111-358), as further amended by the Energy Act of 2020 (P.L. 116-260) to: “(A) to enhance the economic and energy security of the United States through the development of energy technologies that— (i) reduce imports of energy from foreign sources; (ii) reduce energy-related emissions, including greenhouse gases; (iii) improve the energy efficiency of all economic sectors; (iv) provide transformative solutions to improve the management, clean-up, and disposal of radioactive waste and spent nuclear fuel; and (v) improve the resilience, reliability, and security of infrastructure to produce, deliver, and store energy; and (B) to ensure that the United States maintains a technological lead in developing and deploying advanced energy technologies.” ARPA-E issues this Funding Opportunity Announcement (FOA) under its authorizing statute codified at 42 U.S.C. § 16538. The FOA and any awards made under this FOA are subject to 2 C.F.R. Part 200 as supplemented by 2 C.F.R. Part 910. ARPA-E funds research on and the development of transformative science and technology solutions to address the energy and environmental missions of the Department. The agency focuses on technologies that can be meaningfully advanced with a modest investment over a defined period of time in order to catalyze the translation from scientific discovery to early-stage technology. For the latest news and information about ARPA-E, its programs and the research projects currently supported, see: http://arpa-e.energy.gov/. ARPA-E funds transformational research. Existing energy technologies generally progress on established “learning curves” where refinements to a technology and the economies of scale that accrue as manufacturing and distribution develop drive down the cost/performance metric in a gradual fashion. This continual improvement of a technology is important to its increased commercial deployment and is appropriately the focus of the private sector or the applied technology offices within DOE. By contrast, ARPA-E supports transformative research that has the potential to create fundamentally new learning curves. ARPA-E technology projects typically start with cost/performance estimates well above the level of an incumbent technology. Given the high risk inherent in these projects, many will fail to progress, but some may succeed in generating a new learning curve with a projected cost/performance metric that is significantly lower than that of the incumbent technology. ARPA-E funds technology with the potential to be disruptive in the marketplace. The mere creation of a new learning curve does not ensure market penetration. Rather, the ultimate value of a technology is determined by the marketplace, and impactful technologies ultimately become disruptive – that is, they are widely adopted and displace existing technologies from the marketplace or create entirely new markets. ARPA-E understands that definitive proof of market disruption takes time, particularly for energy technologies. Therefore, ARPA-E funds the development of technologies that, if technically successful, have clear disruptive potential, e.g., by demonstrating capability for manufacturing at competitive cost and deployment at scale. ARPA-E funds applied research and development. The Office of Management and Budget defines “applied research” as an “original investigation undertaken in order to acquire new knowledge…directed primarily towards a specific practical aim or objective” and defines “experimental development” as “creative and systematic work, drawing on knowledge gained from research and practical experience, which is directed at producing new products or processes or improving existing products or processes.” (http://science.energy.gov/). Office of Science national scientific user facilities (http://science.energy.gov/user-facilities/) are open to all researchers, including ARPA-E Applicants and awardees. These facilities provide advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. Projects focused on early-stage R&D for the improvement of technology along defined roadmaps may be more appropriate for support through the DOE applied energy offices including: the Office of Energy Efficiency and Renewable Energy (http://www.eere.energy.gov/), the Office of Fossil Energy (http://fossil.energy.gov/), the Office of Nuclear Energy (http://www.energy.gov/ne/office-nuclear-energy), and the Office of Electricity Delivery and Energy Reliability (http://energy.gov/oe/office-electricity-delivery-and-energy-reliability). Applicants interested in receiving financial assistance for basic research (defined by the Office of Management and Budget as “experimental or theoretical work undertaken primarily to acquire new knowledge of the underlying foundations of phenomena and observable facts”) should contact the DOE’s Office of Science (http://science.energy.gov/). Office of Science national scientific user facilities (http://science.energy.gov/user-facilities/) are open to all researchers, including ARPA-E Applicants and awardees. These facilities provide advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. Projects focused on early-stage R&D for the improvement of technology along defined roadmaps may be more appropriate for support through the DOE applied energy offices including: the Office of Energy Efficiency and Renewable Energy (http://www.eere.energy.gov/), the Office of Fossil Energy (http://fossil.energy.gov/), the Office of Nuclear Energy (http://www.energy.gov/ne/office-nuclear-energy), and the Office of Electricity Delivery and Energy Reliability (http://energy.gov/oe/office-electricity-delivery-and-energy-reliability). Program Overview:This announcement is purposely broad in scope, and will cover a wide range of topics to encourage the submission of the most innovative and unconventional ideas in energy technology. The objective of this solicitation is to support high-risk R&D leading to the development of potentially disruptive new technologies across the full spectrum of energy applications. Topics under this FOA will explore new areas of technology development that, if successful, could establish new program areas for ARPA-E, or complement the current portfolio of ARPA-E programs. Applications to this solicitation must have the potential for high impact — if successful, it could create a new class or new trajectory for an energy technology, with the potential to make a significant impact on ARPA-E’s Mission Areas (see Section I.A). Awards under this program may take the form of analyses or exploratory research that provides the agency with information useful for the subsequent development of focused technology programs. Alternatively, awards may support proof-of-concept research for a particular new technology, either in an area not currently supported by the agency or as a potential enhancement to an ongoing focused technology program. Exploratory Topics Overview: This FOA will only accept applications in prespecified Exploratory Topics. Specific areas of interest and relevant deadlines will be posted on the ARPA-E eXCHANGE website (https://arpa-e-foa.energy.gov). For your convenience you can subscribe to the ARPA-E mailing list to receive ARPA-E newsletters and news alerts, as well as updates on when new Exploratory Topics are posted. Each Exploratory Topic announcement will be visible on ARPA-E eXCHANGE as a supporting FOA document. Exploratory Topic details will only be visible in eXCHANGE while the notice is accepting applications. Once the topic deadline has passed the notice will be taken down and ARPA-E will no longer be accepting applications in that area. ARPA-E will only review applications that are responsive to the Exploratory Topic(s) open at the time the application is submitted.

https://www.grants.gov/web/grants/view-opportunity.html?oppId=343476
Funding Opportunity Announcement (FOA) Number DE-FOA-0002785: Exploratory Topics (SBIR/STTR) $2,500,000.00

To obtain a copy of the Funding Opportunity Announcement (FOA) please go to the ARPA-E website at https://arpa-e-foa.energy.gov. To apply to this FOA, Applicants must register with and submit application materials through ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/Registration.aspx). For detailed guidance on using ARPA-E eXCHANGE, please refer to the ARPA-E eXCHANGE User Guide (https://arpa-e-foa.energy.gov/Manuals.aspx). ARPA-E will not review or consider concept papers submitted through other means. For problems with ARPA-E eXCHANGE, email ExchangeHelp@hq.doe.gov (with FOA name and number in the subject line). Questions about this FOA? Check the Frequently Asked Questions available at http://arpa-e.energy.gov/faq. For questions that have not already been answered, email ARPA-E-CO@hq.doe.gov. Agency Overview: The Advanced Research Projects Agency – Energy (ARPA-E), an organization within the Department of Energy (DOE), is chartered by Congress in the America COMPETES Act of 2007 (P.L. 110-69), as amended by the America COMPETES Reauthorization Act of 2010 (P.L. 111-358), as further amended by the Energy Act of 2020 (P.L. 116-260) to: “(A) to enhance the economic and energy security of the United States through the development of energy technologies that— (i) reduce imports of energy from foreign sources; (ii) reduce energy-related emissions, including greenhouse gases; (iii) improve the energy efficiency of all economic sectors; (iv) provide transformative solutions to improve the management, clean-up, and disposal of radioactive waste and spent nuclear fuel; and (v) improve the resilience, reliability, and security of infrastructure to produce, deliver, and store energy; and (B) to ensure that the United States maintains a technological lead in developing and deploying advanced energy technologies.” ARPA-E issues this Funding Opportunity Announcement (FOA) under its authorizing statute codified at 42 U.S.C. § 16538. The FOA and any awards made under this FOA are subject to 2 C.F.R. Part 200 as supplemented by 2 C.F.R. Part 910. ARPA-E funds research on and the development of transformative science and technology solutions to address the energy and environmental missions of the Department. The agency focuses on technologies that can be meaningfully advanced with a modest investment over a defined period of time in order to catalyze the translation from scientific discovery to early-stage technology. For the latest news and information about ARPA-E, its programs and the research projects currently supported, see: http://arpa-e.energy.gov/. ARPA-E funds transformational research. Existing energy technologies generally progress on established “learning curves” where refinements to a technology and the economies of scale that accrue as manufacturing and distribution develop drive down the cost/performance metric in a gradual fashion. This continual improvement of a technology is important to its increased commercial deployment and is appropriately the focus of the private sector or the applied technology offices within DOE. By contrast, ARPA-E supports transformative research that has the potential to create fundamentally new learning curves. ARPA-E technology projects typically start with cost/performance estimates well above the level of an incumbent technology. Given the high risk inherent in these projects, many will fail to progress, but some may succeed in generating a new learning curve with a projected cost/performance metric that is significantly lower than that of the incumbent technology. ARPA-E funds technology with the potential to be disruptive in the marketplace. The mere creation of a new learning curve does not ensure market penetration. Rather, the ultimate value of a technology is determined by the marketplace, and impactful technologies ultimately become disruptive – that is, they are widely adopted and displace existing technologies from the marketplace or create entirely new markets. ARPA-E understands that definitive proof of market disruption takes time, particularly for energy technologies. Therefore, ARPA-E funds the development of technologies that, if technically successful, have clear disruptive potential, e.g., by demonstrating capability for manufacturing at competitive cost and deployment at scale. ARPA-E funds applied research and development. The Office of Management and Budget defines “applied research” as an “original investigation undertaken in order to acquire new knowledge…directed primarily towards a specific practical aim or objective” and defines “experimental development” as “creative and systematic work, drawing on knowledge gained from research and practical experience, which is directed at producing new products or processes or improving existing products or processes.” (http://science.energy.gov/). Office of Science national scientific user facilities (http://science.energy.gov/user-facilities/) are open to all researchers, including ARPA-E Applicants and awardees. These facilities provide advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. Projects focused on early-stage R&D for the improvement of technology along defined roadmaps may be more appropriate for support through the DOE applied energy offices including: the Office of Energy Efficiency and Renewable Energy (http://www.eere.energy.gov/), the Office of Fossil Energy (http://fossil.energy.gov/), the Office of Nuclear Energy (http://www.energy.gov/ne/office-nuclear-energy), and the Office of Electricity Delivery and Energy Reliability (http://energy.gov/oe/office-electricity-delivery-and-energy-reliability). Applicants interested in receiving financial assistance for basic research (defined by the Office of Management and Budget as “experimental or theoretical work undertaken primarily to acquire new knowledge of the underlying foundations of phenomena and observable facts”) should contact the DOE’s Office of Science (http://science.energy.gov/). Office of Science national scientific user facilities (http://science.energy.gov/user-facilities/) are open to all researchers, including ARPA-E Applicants and awardees. These facilities provide advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. Projects focused on early-stage R&D for the improvement of technology along defined roadmaps may be more appropriate for support through the DOE applied energy offices including: the Office of Energy Efficiency and Renewable Energy (http://www.eere.energy.gov/), the Office of Fossil Energy (http://fossil.energy.gov/), the Office of Nuclear Energy (http://www.energy.gov/ne/office-nuclear-energy), and the Office of Electricity Delivery and Energy Reliability (http://energy.gov/oe/office-electricity-delivery-and-energy-reliability). SBIR/STTR Program Overview: The Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs are Government-wide programs authorized under Section 9 of the Small Business Act (15 U.S.C. § 638). The objectives of the SBIR program are to (1) stimulate technological innovation in the private sector, (2) strengthen the role of Small Business Concerns in meeting Federal R&D needs, (3) increase private sector commercialization of innovations derived from Federal R&D activities, (4) foster and encourage participation by socially and economically disadvantaged and women-owned Small Business Concerns, and (5) improve the return on investment from Federally funded research and economic benefits to the Nation. The objective of the STTR program is to stimulate cooperative partnerships of ideas and technologies between Small Business Concerns and partnering Research Institutions through Federally funded R&D activities. ARPA-E administers a joint SBIR/STTR program in accordance with the Small Business Act and the SBIR and STTR Policy Directive issued by the U.S. Small Business Administration (SBA). ARPA-E provides SBIR/STTR funding in three phases (Phase I, Phase II, and Phase IIS). Program Overview: This announcement is purposely broad in scope, and will cover a wide range of topics to encourage the submission of the most innovative and unconventional ideas in energy technology. The objective of this solicitation is to support high-risk R&D leading to the development of potentially disruptive new technologies across the full spectrum of energy applications. Topics under this FOA will explore new areas of technology development that, if successful, could establish new program areas for ARPA-E, or complement the current portfolio of ARPA-E programs. Applications to this solicitation must have the potential for high impact — if successful, it could create a new class or new trajectory for an energy technology, with the potential to make a significant impact on ARPA-E’s Mission Areas (see Section I.A). Awards under this program may take the form of analyses or exploratory research that provides the agency with information useful for the subsequent development of focused technology programs. Alternatively, awards may support proof-of-concept research for a particular new technology, either in an area not currently supported by the agency or as a potential enhancement to an ongoing focused technology program. Exploratory Topics Overview: This FOA will only accept applications in prespecified Exploratory Topics. Specific areas of interest and relevant deadlines will be posted on the ARPA-E eXCHANGE website (https://arpa-e-foa.energy.gov). For your convenience you can subscribe to the ARPA-E mailing list to receive ARPA-E newsletters and news alerts, as well as updates on when new Exploratory Topics are posted.Each Exploratory Topic announcement will be visible on ARPA-E eXCHANGE as a supporting FOA document. Exploratory Topic details will only be visible in eXCHANGE while the notice is accepting applications. Once the topic deadline has passed the notice will be taken down and ARPA-E will no longer be accepting applications in that area. ARPA-E will only review applications that are responsive to the Exploratory Topic(s) open at the time the application is submitted.

https://www.grants.gov/web/grants/view-opportunity.html?oppId=343506
ECOSynBIO SBIR/STTR $3,677,642.00

ECOSynBio SBIR/STTRThis funding opportunity seeks submissions to establish new technologies to significantly improve the carbon efficiency of bioconversion platforms through the accommodation of external reducing equivalents. Proposed systems of interest include, but are not limited to: (1) carbon optimized fermentation strains that avoid CO2 evolution, (2) engineered mixotrophic consortia or systems that avoid CO2 evolution, (3) biomass or gas fermentation with internal CO2 utilization, (4) cell-free carbon optimized biocatalytic biomass conversion and/or CO2 utilization, and (5) cross-cutting or other proposed carbon optimized bioconversion schemes. All systems will need to demonstrate the capacity to accommodate external reducing equivalents to optimize the carbon efficiency of the system as compared to traditional fermentation systems (i.e. the sum of the recoverable energy contents of the products is greater than the energy content of the biomass or primary carbon feedstock). • To apply to this FOA, Applicants must register with and submit application materials through ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/Registration.aspx). For detailed guidance on using ARPA-E eXCHANGE, see Section IV.H.1 of the FOA.

https://www.grants.gov/web/grants/view-opportunity.html?oppId=329015
FOA Number: DE-FOA-0002626 Harnessing Emissions into Structures Taking Inputs from the Atmosphere (HESTIA) (SBIR/STTR) $3,721,115.00

FOA Number: DE-FOA-0002626 Harnessing Emissions into Structures Taking Inputs from the Atmosphere (HESTIA) (SBIR/STTR) To obtain a copy of the Funding Opportunity Announcement (FOA) please go to the ARPA-E website at https://arpa-e-foa.energy.gov. To apply to this FOA, Applicants must register with and submit application materials through ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/Registration.aspx). For detailed guidance on using ARPA-E eXCHANGE, please refer to the ARPA-E eXCHANGE User Guide (https://arpa-e-foa.energy.gov/Manuals.aspx). ARPA-E will not review or consider concept papers submitted through other means. For problems with ARPA-E eXCHANGE, email ExchangeHelp@hq.doe.gov (with FOA name and number in the subject line). Questions about this FOA? Check the Frequently Asked Questions available at http://arpa-e.energy.gov/faq. For questions that have not already been answered, email ARPA-E-CO@hq.doe.gov. Agency Overview: The Advanced Research Projects Agency – Energy (ARPA-E), an organization within the Department of Energy (DOE), is chartered by Congress in the America COMPETES Act of 2007 (P.L. 110-69), as amended by the America COMPETES Reauthorization Act of 2010 (P.L. 111-358), as further amended by the Energy Act of 2020 (P.L. 116-260) to: “(A) to enhance the economic and energy security of the United States through the development of energy technologies that— (i) reduce imports of energy from foreign sources; (ii) reduce energy-related emissions, including greenhouse gases; (iii) improve the energy efficiency of all economic sectors; (iv) provide transformative solutions to improve the management, clean-up, and disposal of radioactive waste and spent nuclear fuel; and (v) improve the resilience, reliability, and security of infrastructure to produce, deliver, and store energy; and (B) to ensure that the United States maintains a technological lead in developing and deploying advanced energy technologies.” ARPA-E issues this Funding Opportunity Announcement (FOA) under its authorizing statute codified at 42 U.S.C. § 16538. The FOA and any awards made under this FOA are subject to 2 C.F.R. Part 200 as supplemented by 2 C.F.R. Part 910. ARPA-E funds research on and the development of transformative science and technology solutions to address the energy and environmental missions of the Department. The agency focuses on technologies that can be meaningfully advanced with a modest investment over a defined period of time in order to catalyze the translation from scientific discovery to early-stage technology. For the latest news and information about ARPA-E, its programs and the research projects currently supported, see: http://arpa-e.energy.gov/. ARPA-E funds transformational research. Existing energy technologies generally progress on established “learning curves” where refinements to a technology and the economies of scale that accrue as manufacturing and distribution develop drive down the cost/performance metric in a gradual fashion. This continual improvement of a technology is important to its increased commercial deployment and is appropriately the focus of the private sector or the applied technology offices within DOE. By contrast, ARPA-E supports transformative research that has the potential to create fundamentally new learning curves. ARPA-E technology projects typically start with cost/performance estimates well above the level of an incumbent technology. Given the high risk inherent in these projects, many will fail to progress, but some may succeed in generating a new learning curve with a projected cost/performance metric that is significantly lower than that of the incumbent technology. ARPA-E funds technology with the potential to be disruptive in the marketplace. The mere creation of a new learning curve does not ensure market penetration. Rather, the ultimate value of a technology is determined by the marketplace, and impactful technologies ultimately become disruptive – that is, they are widely adopted and displace existing technologies from the marketplace or create entirely new markets. ARPA-E understands that definitive proof of market disruption takes time, particularly for energy technologies. Therefore, ARPA-E funds the development of technologies that, if technically successful, have clear disruptive potential, e.g., by demonstrating capability for manufacturing at competitive cost and deployment at scale. ARPA-E funds applied research and development. The Office of Management and Budget defines “applied research” as an “original investigation undertaken in order to acquire new knowledge…directed primarily towards a specific practical aim or objective” and defines “experimental development” as “creative and systematic work, drawing on knowledge gained from research and practical experience, which is directed at producing new products or processes or improving existing products or processes (http://science.energy.gov/). Office of Science national scientific user facilities (http://science.energy.gov/user-facilities/) are open to all researchers, including ARPA-E Applicants and awardees. These facilities provide advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. Projects focused on early-stage R&D for the improvement of technology along defined roadmaps may be more appropriate for support through the DOE applied energy offices including: the Office of Energy Efficiency and Renewable Energy (http://www.eere.energy.gov/), the Office of Fossil Energy (http://fossil.energy.gov/), the Office of Nuclear Energy (http://www.energy.gov/ne/office-nuclear-energy), and the Office of Electricity Delivery and Energy Reliability (http://energy.gov/oe/office-electricity-delivery-and-energy-reliability). Applicants interested in receiving financial assistance for basic research (defined by the Office of Management and Budget as “experimental or theoretical work undertaken primarily to acquire new knowledge of the underlying foundations of phenomena and observable facts”) should contact the DOE’s Office of Science (http://science.energy.gov/). Office of Science national scientific user facilities (http://science.energy.gov/user-facilities/) are open to all researchers, including ARPA-E Applicants and awardees. These facilities provide advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. Projects focused on early-stage R&D for the improvement of technology along defined roadmaps may be more appropriate for support through the DOE applied energy offices including: the Office of Energy Efficiency and Renewable Energy (http://www.eere.energy.gov/), the Office of Fossil Energy (http://fossil.energy.gov/), the Office of Nuclear Energy (http://www.energy.gov/ne/office-nuclear-energy), and the Office of Electricity Delivery and Energy Reliability (http://energy.gov/oe/office-electricity-delivery-and-energy-reliability). Program Overview: The goal of the HESTIA program is to support the development of technologies that nullify embodied greenhouse gas (GHG) emissions (see Section I.B above), while simultaneously transforming buildings into net carbon storage structures. Specifically, projects funded under the HESTIA Program will develop and demonstrate building materials and whole-building designs that are net carbon negative (see Section I.B above) on a life cycle basis by utilizing atmospheric CO2 or CH4 (see Section I.B above) from a wide range of potential feedstocks (e.g., forestry and purpose-grown products, agricultural residues, marine derived, direct carbon utilization) in the production process. HESTIA metrics are: •storage of more carbon in the chemical structure of the finished product than emitted during manufacture, construction, and use, •relevant performance testing (e.g., flammability, strength) as required per applicable building code and incumbent specifications, •market advantage (e.g., improved material performance in at least one area, lower cost, easier installation) over the best-in-class incumbent building element(s) (i.e. structural and/or enclosure) selected for replacement, and •sufficient retention of carbon storage over service lifetime and minimized end-of-life emissions where possible by designing for reuse, repurposing, and/or recycling. This FOA supports the development of viable technologies to achieve these metrics in a cost-effective manner to meet building construction industry demand for low-cost. Technical categories of interest are identified in Section I.E of the FOA. Performance targets for the technical categories of interest are provided in Section I.F of the FOA. Section I.G of the FOA provides information on Life Cycle Assessment (LCA) requirements. To ensure that the technologies developed through this Program are evaluated consistently and transparently, a separate solicitation will be used to develop and perform Life Cycle Assessments (LCAs) in conjunction with and to support Applicants of this FOA. The HESTIA Program offers a unique opportunity to address the growing need for market-ready negative emission technologies to implement carbon removal strategies by changing the paradigm for building construction through the use of carbon negativity as a design parameter. Projects will create novel designs that maximize the energy benefits of carbon storage in addition to manufacturing methods and performance of the materials themselves. To read this FOA in its entirety, please go to the ARPA-E website at https://arpa-e-foa.energy.gov.

https://www.grants.gov/web/grants/view-opportunity.html?oppId=336463
Mining Innovations for Negative Emissions Resource Recovery (MINER) (SBIR/STTR) $3,952,638.00

To obtain a copy of the Funding Opportunity Announcement (FOA) please go to the ARPA-E website at https://arpa-e-foa.energy.gov. To apply to this FOA, Applicants must register with and submit application materials through ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/Registration.aspx). For detailed guidance on using ARPA-E eXCHANGE, please refer to the ARPA-E eXCHANGE User Guide (https://arpa-e-foa.energy.gov/Manuals.aspx). ARPA-E will not review or consider concept papers submitted through other means. For problems with ARPA-E eXCHANGE, email ExchangeHelp@hq.doe.gov (with FOA name and number in the subject line). Questions about this FOA? Check the Frequently Asked Questions available at http://arpa-e.energy.gov/faq. For questions that have not already been answered, email ARPA-E-CO@hq.doe.gov. Agency Overview: The Advanced Research Projects Agency – Energy (ARPA-E), an organization within the Department of Energy (DOE), is chartered by Congress in the America COMPETES Act of 2007 (P.L. 110-69), as amended by the America COMPETES Reauthorization Act of 2010 (P.L. 111-358), as further amended by the Energy Act of 2020 (P.L. 116-260) to: “(A) to enhance the economic and energy security of the United States through the development of energy technologies that— (i) reduce imports of energy from foreign sources; (ii) reduce energy-related emissions, including greenhouse gases; (iii) improve the energy efficiency of all economic sectors; (iv) provide transformative solutions to improve the management, clean-up, and disposal of radioactive waste and spent nuclear fuel; and (v) improve the resilience, reliability, and security of infrastructure to produce, deliver, and store energy; and (B) to ensure that the United States maintains a technological lead in developing and deploying advanced energy technologies.” ARPA-E issues this Funding Opportunity Announcement (FOA) under its authorizing statute codified at 42 U.S.C. § 16538. The FOA and any awards made under this FOA are subject to 2 C.F.R. Part 200 as supplemented by 2 C.F.R. Part 910. ARPA-E funds research on and the development of transformative science and technology solutions to address the energy and environmental missions of the Department. The agency focuses on technologies that can be meaningfully advanced with a modest investment over a defined period of time in order to catalyze the translation from scientific discovery to early-stage technology. For the latest news and information about ARPA-E, its programs and the research projects currently supported, see: http://arpa-e.energy.gov/. ARPA-E funds transformational research. Existing energy technologies generally progress on established “learning curves” where refinements to a technology and the economies of scale that accrue as manufacturing and distribution develop drive down the cost/performance metric in a gradual fashion. This continual improvement of a technology is important to its increased commercial deployment and is appropriately the focus of the private sector or the applied technology offices within DOE. By contrast, ARPA-E supports transformative research that has the potential to create fundamentally new learning curves. ARPA-E technology projects typically start with cost/performance estimates well above the level of an incumbent technology. Given the high risk inherent in these projects, many will fail to progress, but some may succeed in generating a new learning curve with a projected cost/performance metric that is significantly lower than that of the incumbent technology. ARPA-E funds technology with the potential to be disruptive in the marketplace. The mere creation of a new learning curve does not ensure market penetration. Rather, the ultimate value of a technology is determined by the marketplace, and impactful technologies ultimately become disruptive – that is, they are widely adopted and displace existing technologies from the marketplace or create entirely new markets. ARPA-E understands that definitive proof of market disruption takes time, particularly for energy technologies. Therefore, ARPA-E funds the development of technologies that, if technically successful, have clear disruptive potential, e.g., by demonstrating capability for manufacturing at competitive cost and deployment at scale. ARPA-E funds applied research and development. The Office of Management and Budget defines “applied research” as an “original investigation undertaken in order to acquire new knowledge…directed primarily towards a specific practical aim or objective” and defines “experimental development” as “creative and systematic work, drawing on knowledge gained from research and practical experience, which is directed at producing new products or processes or improving existing products or processes.”1 Applicants interested in receiving financial assistance for basic research (defined by the Office of Management and Budget as “experimental or theoretical work undertaken primarily to acquire new knowledge of the underlying foundations of phenomena and observable facts”)2 should contact the DOE’s Office of Science (http://science.energy.gov/). Office of Science national scientific user facilities (http://science.energy.gov/user-facilities/) are open to all researchers, including ARPA-E Applicants and awardees. These facilities provide advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. Projects focused on early-stage R&D for the improvement of technology along defined roadmaps may be more appropriate for support through the DOE applied energy offices including: the Office of Energy Efficiency and Renewable Energy (http://www.eere.energy.gov/), the Office of Fossil Energy and Carbon Management (https://www.energy.gov/fecm/office-fossil-energy-and-carbon-management), the Office of Nuclear Energy (http://www.energy.gov/ne/office-nuclear-energy), and the Office of Electricity (https://www.energy.gov/oe/office-electricity). Program Overview: The Mining Innovations for Negative Emissions Resource Recovery (MINER) program’s aim is to support the development of commercial-ready technologies that give the United States a net-zero or net negative emissions pathway toward increased domestic supplies of copper, nickel, lithium, cobalt, rare earth elements, and other critical elements required for the transition to clean energy. The lack of a secure domestic supply of these minerals poses a significant supply chain risk for the United States, especially with regard to batteries, renewable energy generation, and transmission. Meanwhile, the domestic mining industry faces the rapid depletion of high-profit deposits, increased cost of mining and processing, expensive management, and accumulation of tailings, resulting in an overall reduced return of investment by conventional mining methods. Consequently, the Advanced Research Projects Agency – Energy (ARPA–E) is issuing this Funding Opportunity Announcement (FOA) with objectives to support the development of technology and approaches to: (1) decrease comminution energy by 50% compared to state-of-the-art; (2) increase yield of energy-relevant minerals by reducing unrecovered energy-relevant minerals in the tailings by 50% compared to state-of-the-art; and (3) enabling the negative emissions production of key minerals by sequestering >10 wt.% CO2e per metric ton of ore processed. Four categories have been identified as necessary to achieve these goals and are discussed in detail later: I. Mineral comminution II. Improvements to beneficiation and processing to increase mineral yield III. Carbon negative reactions IV. Sensing, analyzing and enabling carbonation potential and mineralization This FOA supports the development of viable technologies to achieve these goals cost-effectively with the potential to reach commercial scalability. Identified within this FOA are technical categories of interest in Section I.G. Also provided within this FOA are performance targets for the technical categories of interest in Section I.H. Lastly, Sections I.I and I.J of the FOA provide information on technoeconomic analysis (TEA) and Life Cycle Assessment (LCA) requirements, respectively. To view the FOA in its entirety, please visit https://arpa-e-foa.energy.gov.

https://www.grants.gov/web/grants/view-opportunity.html?oppId=338324
Electric Vehicles for American Low-Carbon Living (EVs4ALL) - SBIR/STTR $3,952,638.00

DE-FOA-0002761, Electric Vehicles for American Low-Carbon Living (EVs4ALL) - SBIR/STTR To obtain a copy of the Funding Opportunity Announcement (FOA) please go to the ARPA-E website at https://arpa-e-foa.energy.gov. To apply to this FOA, Applicants must register with and submit application materials through ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/Registration.aspx). For detailed guidance on using ARPA-E eXCHANGE, please refer to the ARPA-E eXCHANGE User Guide (https://arpa-e-foa.energy.gov/Manuals.aspx). ARPA-E will not review or consider concept papers submitted through other means. For problems with ARPA-E eXCHANGE, email ExchangeHelp@hq.doe.gov (with FOA name and number in the subject line). Questions about this FOA? Check the Frequently Asked Questions available at http://arpa-e.energy.gov/faq. For questions that have not already been answered, email ARPA-E-CO@hq.doe.gov. Agency Overview: The Advanced Research Projects Agency – Energy (ARPA-E), an organization within the Department of Energy (DOE), is chartered by Congress in the America COMPETES Act of 2007 (P.L. 110-69), as amended by the America COMPETES Reauthorization Act of 2010 (P.L. 111-358), as further amended by the Energy Act of 2020 (P.L. 116-260) to: “(A) to enhance the economic and energy security of the United States through the development of energy technologies that— (i) reduce imports of energy from foreign sources; (ii) reduce energy-related emissions, including greenhouse gases; (iii) improve the energy efficiency of all economic sectors; (iv) provide transformative solutions to improve the management, clean-up, and disposal of radioactive waste and spent nuclear fuel; and (v) improve the resilience, reliability, and security of infrastructure to produce, deliver, and store energy; and (B) to ensure that the United States maintains a technological lead in developing and deploying advanced energy technologies.” ARPA-E issues this Funding Opportunity Announcement (FOA) under its authorizing statute codified at 42 U.S.C. § 16538. The FOA and any awards made under this FOA are subject to 2 C.F.R. Part 200 as supplemented by 2 C.F.R. Part 910. ARPA-E funds research on and the development of transformative science and technology solutions to address the energy and environmental missions of the Department. The agency focuses on technologies that can be meaningfully advanced with a modest investment over a defined period of time in order to catalyze the translation from scientific discovery to early-stage technology. For the latest news and information about ARPA-E, its programs and the research projects currently supported, see: http://arpa-e.energy.gov/. ARPA-E funds transformational research. Existing energy technologies generally progress on established “learning curves” where refinements to a technology and the economies of scale that accrue as manufacturing and distribution develop drive down the cost/performance metric in a gradual fashion. This continual improvement of a technology is important to its increased commercial deployment and is appropriately the focus of the private sector or the applied technology offices within DOE. By contrast, ARPA-E supports transformative research that has the potential to create fundamentally new learning curves. ARPA-E technology projects typically start with cost/performance estimates well above the level of an incumbent technology. Given the high risk inherent in these projects, many will fail to progress, but some may succeed in generating a new learning curve with a projected cost/performance metric that is significantly lower than that of the incumbent technology. ARPA-E funds technology with the potential to be disruptive in the marketplace. The mere creation of a new learning curve does not ensure market penetration. Rather, the ultimate value of a technology is determined by the marketplace, and impactful technologies ultimately become disruptive – that is, they are widely adopted and displace existing technologies from the marketplace or create entirely new markets. ARPA-E understands that definitive proof of market disruption takes time, particularly for energy technologies. Therefore, ARPA-E funds the development of technologies that, if technically successful, have clear disruptive potential, e.g., by demonstrating capability for manufacturing at competitive cost and deployment at scale. ARPA-E funds applied research and development. The Office of Management and Budget defines “applied research” as an “original investigation undertaken in order to acquire new knowledge…directed primarily towards a specific practical aim or objective” and defines “experimental development” as “creative and systematic work, drawing on knowledge gained from research and practical experience, which is directed at producing new products or processes or improving existing products or processes.” (http://science.energy.gov/). Office of Science national scientific user facilities (http://science.energy.gov/user-facilities/) are open to all researchers, including ARPA-E Applicants and awardees. These facilities provide advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. Projects focused on early-stage R&D for the improvement of technology along defined roadmaps may be more appropriate for support through the DOE applied energy offices including: the Office of Energy Efficiency and Renewable Energy (http://www.eere.energy.gov/), the Office of Fossil Energy (http://fossil.energy.gov/), the Office of Nuclear Energy (http://www.energy.gov/ne/office-nuclear-energy), and the Office of Electricity Delivery and Energy Reliability (http://energy.gov/oe/office-electricity-delivery-and-energy-reliability). Applicants interested in receiving financial assistance for basic research (defined by the Office of Management and Budget as “experimental or theoretical work undertaken primarily to acquire new knowledge of the underlying foundations of phenomena and observable facts”) should contact the DOE’s Office of Science (http://science.energy.gov/). Office of Science national scientific user facilities (http://science.energy.gov/user-facilities/) are open to all researchers, including ARPA-E Applicants and awardees. These facilities provide advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. Projects focused on early-stage R&D for the improvement of technology along defined roadmaps may be more appropriate for support through the DOE applied energy offices including: the Office of Energy Efficiency and Renewable Energy (http://www.eere.energy.gov/), the Office of Fossil Energy (http://fossil.energy.gov/), the Office of Nuclear Energy (http://www.energy.gov/ne/office-nuclear-energy), and the Office of Electricity Delivery and Energy Reliability (http://energy.gov/oe/office-electricity-delivery-and-energy-reliability). Program Overview: According to the Intergovernmental Panel on Climate Change (IPCC), global warming of 1.5 to 2 degrees Celsius will be exceeded during the twenty-first century unless deep reductions in carbon dioxide (CO2) and other greenhouse gas (GHG) emissions occur in the coming decades. The United States (U.S.) alone is responsible for generating approximately 15% of global CO2 emissions despite being inhabited by only 5% of the Earth’s population. At present, the transportation sector is responsible for 28% of total domestic emissions, with road-based passenger vehicles accounting for 57% of that segment. Domestically, passenger vehicles [i.e., cars, sport utility vehicles (SUVs), minivans and pick-up trucks] collectively emit more than one billion tons of CO2 per year. As the U.S. works to decarbonize the transportation sector and produce an increasing amount of “clean” (zero emission) electricity, electric vehicles (EVs) become logical alternatives to internal combustion engines (ICEs). However, to accelerate and/or broaden EV adoption, consumer-centric considerations need to be more thoroughly addressed, including cost, convenience, reliability, and safety. While early adopters contributed to record EV sales in 2021, comprising 3.6% of total cars sold in the U.S., 42% of these EVs were sold in California, followed by other states with comparable climates and/or wealth. Furthermore, EV ownership is dominated by a minority demographic of the U.S. population based on age, gender, annual salary, level of education, and other factors. Although it is expected that EVs will continue to gain market share domestically, significantly more effort is required to address and remove key technology barriers to EV adoption among a greater percentage of the population. In response to these challenges, ARPA-E's Electric Vehicles for American Low-carbon Living (EVs4ALL) program will focus on advancing next-generation battery technologies that have the potential to significantly improve affordability, convenience, reliability, and safety of EVs compared to those available today, to directly address the following key market needs: • Approximately 37% of Americans live in residences without garages or carports and therefore do not have access to the convenience of charging at home. Thus, EV batteries capable of safe, rapid charging are necessary to appeal to this market. • Many Americans live in northern states where EV battery performance can be experienced as unsatisfactory at low temperatures, due to reductions in capacity and power. Consequently, EV batteries that are more resilient at low temperatures are critical to motivate greater adoption in colder climates. • The median U.S. household income is approximately $70,000 and although a subset of used EV models may be available to purchase for less than $20,000, their maximum range (miles) may be perceived as unacceptably low. Since two thirds of Americans purchase used vehicles rather than new, more durable (“longer-lasting”) EV batteries are required to stimulate and assure the used EV market. To view the FOA in its entirety, please visit https://arpa-e-foa.energy.gov

https://www.grants.gov/web/grants/view-opportunity.html?oppId=339991
Cooling Operations Optimized for Leaps in Energy, Reliability and Carbon Hyperefficiency for Information Processing Systems (COOLERCHIPS) (SBIR/STTR) $3,952,638.00

Funding Opportunity Announcement (FOA) Number DE-FOA-0002852: Cooling Operations Optimized for Leaps in Energy, Reliability and Carbon Hyperefficiency for Information Processing Systems (COOLERCHIPS) (SBIR/STTR) To obtain a copy of the Funding Opportunity Announcement (FOA) please go to the ARPA-E website at https://arpa-e-foa.energy.gov. To apply to this FOA, Applicants must register with and submit application materials through ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/Registration.aspx). For detailed guidance on using ARPA-E eXCHANGE, please refer to the ARPA-E eXCHANGE User Guide (https://arpa-e-foa.energy.gov/Manuals.aspx). ARPA-E will not review or consider concept papers submitted through other means. For problems with ARPA-E eXCHANGE, email ExchangeHelp@hq.doe.gov (with FOA name and number in the subject line). Questions about this FOA? Check the Frequently Asked Questions available at http://arpa-e.energy.gov/faq. For questions that have not already been answered, email ARPA-E-CO@hq.doe.gov. AGENCY OVERVIEW The Advanced Research Projects Agency – Energy (ARPA-E), an organization within the Department of Energy (DOE), is chartered by Congress in the America COMPETES Act of 2007 (P.L. 110-69), as amended by the America COMPETES Reauthorization Act of 2010 (P.L. 111-358), as further amended by the Energy Act of 2020 (P.L. 116-260): “(A) to enhance the economic and energy security of the United States through the development of energy technologies that— (i) reduce imports of energy from foreign sources; (ii) reduce energy-related emissions, including greenhouse gases; (iii) improve the energy efficiency of all economic sectors; (iv) provide transformative solutions to improve the management, clean-up, and disposal of radioactive waste and spent nuclear fuel; and (v) improve the resilience, reliability, and security of infrastructure to produce, deliver, and store energy; and (B) to ensure that the United States maintains a technological lead in developing and deploying advanced energy technologies.” ARPA-E issues this Funding Opportunity Announcement (FOA) under its authorizing statute codified at 42 U.S.C. § 16538. The FOA and any cooperative agreements or grants made under this FOA are subject to 2 C.F.R. Part 200 as supplemented by 2 C.F.R. Part 910 . ARPA-E funds research on, and the development of, transformative science and technology solutions to address the energy and environmental missions of the Department. The agency focuses on technologies that can be meaningfully advanced with a modest investment over a defined period of time in order to catalyze the translation from scientific discovery to early-stage technology. For the latest news and information about ARPA-E, its programs and the research projects currently supported, see: http://arpa-e.energy.gov/. ARPA-E funds transformational research. Existing energy technologies generally progress on established “learning curves” where refinements to a technology and the economies of scale that accrue as manufacturing and distribution develop drive improvements to the cost/performance metric in a gradual fashion. This continual improvement of a technology is important to its increased commercial deployment and is appropriately the focus of the private sector or the applied technology offices within DOE. By contrast, ARPA-E supports transformative research that has the potential to create fundamentally new learning curves. ARPA-E technology projects typically start with cost/performance estimates well above the level of an incumbent technology. Given the high risk inherent in these projects, many will fail to progress, but some may succeed in generating a new learning curve with a projected cost/performance metric that is significantly better than that of the incumbent technology. ARPA-E funds technology with the potential to be disruptive in the marketplace. The mere creation of a new learning curve does not ensure market penetration. Rather, the ultimate value of a technology is determined by the marketplace, and impactful technologies ultimately become disruptive – that is, they are widely adopted and displace existing technologies from the marketplace or create entirely new markets. ARPA-E understands that definitive proof of market disruption takes time, particularly for energy technologies. Therefore, ARPA-E funds the development of technologies that, if technically successful, have clear disruptive potential, e.g., by demonstrating capability for manufacturing at competitive cost and deployment at scale. ARPA-E funds applied research and development. The Office of Management and Budget defines “applied research” as an “original investigation undertaken in order to acquire new knowledge…directed primarily towards a specific practical aim or objective” and defines “experimental development” as “creative and systematic work, drawing on knowledge gained from research and practical experience, which is directed at producing new products or processes or improving existing products or processes.” Applicants interested in receiving financial assistance for basic research (defined by the Office of Management and Budget as “experimental or theoretical work undertaken primarily to acquire new knowledge of the underlying foundations of phenomena and observable facts”) should contact the DOE’s Office of Science (http://science.energy.gov/). Office of Science national scientific user facilities (http://science.energy.gov/user-facilities/) are open to all researchers, including ARPA-E Applicants and awardees. These facilities provide advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. Projects focused on early-stage R&D for the improvement of technology along defined roadmaps may be more appropriate for support through the DOE applied energy offices including: the Office of Energy Efficiency and Renewable Energy (http://www.eere.energy.gov/), the Office of Fossil Energy and Carbon Management (https://www.energy.gov/fecm/office-fossil-energy-and-carbon-management), the Office of Nuclear Energy (http://www.energy.gov/ne/office-nuclear-energy), and the Office of Electricity (https://www.energy.gov/oe/office-electricity). Program Overview Projects funded under The Cooling Operations Optimized for Leaps in Energy, Reliability and Carbon Hyperefficiency for Information Processing Systems (COOLERCHIPS) program will develop novel high performance, high reliability cooling systems for compute electronics. These cooling systems will enable a new class of power-dense computational systems, data centers, and modular EDGE systems that will be cooled using 5% or less of the IT load at any location in the United States at any time of the year. The COOLERCHIPS program will support the leveraging of recent nascent advances in thermal management, coolant flow technology, materials, manufacturing, design, controls, and reliability engineering. Illustrative example areas of interest include, but are not limited to: •New materials, surface treatments, thermal interface solutions, manufacturing methods and conduction methods for improving heat transfer from chipsets; •Advances in heat transfer to create and control 3D fluid structures with minimal thermal boundary layers; •Innovations in cooling system engineering for reliability that address severity, occurrence and detectability of potential component failures and novel ideas that include system level risk mitigation, health monitoring and controls; and •Novel modular data center or EDGE compute system designs that can operate high density compute systems at any time in any US location with highly efficient cooling systems. The COOLERCHIPS FOA seeks to encourage the formation of multi-disciplinary teams to overcome the technology barriers for the development of high-performance cooling solutions that can simultaneously achieve the required system reliability and cost viability . Proposing teams should incorporate expertise in relevant compute servers, heat transfer, reliability, modeling, data center techno-economics, data center operation, and commercialization. ARPA-E has identified four Technical Categories for cooling system innovation opportunities. Only two of these Categories (A and B) are available to apply to under this SBIR/STTR FOA (DE-FOA-0002852), but all four are available under DE-FOA-0002851 (the Standard FOA). As detailed further in Section I.E.2, they will focus on transformative solutions that can deliver low cooling power consumption (= 5% of the IT load) while supporting high rack power density (= 126 kW/ 42U rack or equivalent ) at any time and any location in the US (targeting 0.4% design day targets analogous to ASHRAE methods ) and show a path to system reliability and cost similar to that of conventional data centers today. Technical Category A will focus on innovations for heat removal from server chipsets to facility cooling systems. Such innovations could be applied in the compute room of existing data centers. Technical Category B will support innovations in modular data center systems where individual stand-alone module/pods are envisioned with high performance computing systems that can operate in any outside ambient environment. ARPA-E encourages SBIR/STTR Technical Categories A and B teams to accept support from Technical Category C teams (under the Standard FOA) that will develop and make available tools to design and analyze data center and compute cooling systems with the capability to optimize their reliability and minimize their energy, CO2 footprint, and cost at the system level. ARPA-E encourages SBIR/STTR Technical Categories A and B teams to accept further support from Technical Category D teams (under the Standard FOA) which will provide testing facilities for performance evaluation and technology transition to commercialization. The Technology Categories are described in Section I.E of this FOA. Each application should be limited to only one Technical Category (either A or B), although applicants may submit multiple applications for different Technical Categories and participate on multiple application teams. Additionally, applicants may submit multiple applications to the same Technical Category if the applications are scientifically distinct. If a small business wants to apply to Technical Categories C or D, they should do so under the Standard FOA (DE-AR-0002851). COOLERCHIPS will be structured as a program with a period of performance up to 36 months. ARPA-E anticipates that awarded teams will initially execute an analytical/computational design effort and will reduce key risks through component and single server testing. At the middle of proposed period of performance, a Go/No-Go milestone is anticipated that will determine whether key risks have been sufficiently retired to proceed to the second half of the project in which teams will develop, fabricate, and test full size prototypes (rack scale testing for Technical Category A and full-scale modular data center/EDGE system for Technical Category B). See Section I.E.3, “Program Structure and Deliverables” for further details. To view the FOA in its entirety, please visit https://arpa-e-foa.energy.gov.

https://www.grants.gov/web/grants/view-opportunity.html?oppId=343719
UNLOCKING LASTING TRANSFORMATIVE RESILIENCY ADVANCES BY FASTER ACTUATION OF POWER SEMICONDUCTOR TECHNOLOGIES SBIR/STTR (ULTRAFAST SBIR/STTR) $4,241,580.00

Program and FOA Description for Grants.gov:DE-FOA-0002999: Unlocking Lasting Transformative Resiliency Advances by Faster Actuation of Power Semiconductor Technologies (ULTRAFAST) (SBIR/STTR)Program Description for Grants.gov:To obtain a copy of the Funding Opportunity Announcement (FOA) please go to the ARPA-E website at https://arpa-e-foa.energy.gov. To apply to this FOA, Applicants must register with and submit application materials through ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/Registration.aspx). For detailed guidance on using ARPA-E eXCHANGE, please refer to the ARPA-E eXCHANGE User Guide (https://arpa-e-foa.energy.gov/Manuals.aspx). ARPA-E will not review or consider concept papers submitted through other means. For problems with ARPA-E eXCHANGE, email ExchangeHelp@hq.doe.gov (with FOA name and number in the subject line).Questions about this FOA? Check the Frequently Asked Questions available at http://arpa-e.energy.gov/faq. For questions that have not already been answered, email ARPA-E-CO@hq.doe.gov.AGENCY OVERVIEWThe Advanced Research Projects Agency – Energy (ARPA-E), an organization within the Department of Energy (DOE), is chartered by Congress in the America COMPETES Act of 2007 (P.L. 110-69), as amended by the America COMPETES Reauthorization Act of 2010 (P.L. 111-358), as further amended by the Energy Act of 2020 (P.L. 116-260): “(A) to enhance the economic and energy security of the United States through the development of energy technologies that— (i) reduce imports of energy from foreign sources; (ii) reduce energy-related emissions, including greenhouse gases; (iii) improve the energy efficiency of all economic sectors; (iv) provide transformative solutions to improve the management, clean-up, and disposal of radioactive waste and spent nuclear fuel; and (v) improve the resilience, reliability, and security of infrastructure to produce, deliver, and store energy; and (B) to ensure that the United States maintains a technological lead in developing and deploying advanced energy technologies.” ARPA-E issues this Funding Opportunity Announcement (FOA) under its authorizing statute codified at 42 U.S.C. § 16538. The FOA and any cooperative agreements or grants made under this FOA are subject to 2 C.F.R. Part 200 as supplemented by 2 C.F.R. Part 910.ARPA-E funds research on, and the development of, transformative science and technology solutions to address the energy and environmental missions of the Department. The agency focuses on technologies that can be meaningfully advanced with a modest investment over a defined period of time in order to catalyze the translation from scientific discovery to early-stage technology. For the latest news and information about ARPA-E, its programs and the research projects currently supported, see: http://arpa-e.energy.gov/.ARPA-E funds transformational research. Existing energy technologies generally progress on established “learning curves” where refinements to a technology and the economies of scale that accrue as manufacturing and distribution develop drive improvements to the cost/performance metric in a gradual fashion. This continual improvement of a technology is important to its increased commercial deployment and is appropriately the focus of the private sector or the applied technology offices within DOE. By contrast, ARPA-E supports transformative research that has the potential to create fundamentally new learning curves. ARPA-E technology projects typically start with cost/performance estimates well above the level of an incumbent technology. Given the high risk inherent in these projects, many will fail to progress, but some may succeed in generating a new learning curve with a projected cost/performance metric that is significantly better than that of the incumbent technology.ARPA-E funds technology with the potential to be disruptive in the marketplace. The mere creation of a new learning curve does not ensure market penetration. Rather, the ultimate value of a technology is determined by the marketplace, and impactful technologies ultimately become disruptive – that is, they are widely adopted and displace existing technologies from the marketplace or create entirely new markets. ARPA-E understands that definitive proof of market disruption takes time, particularly for energy technologies. Therefore, ARPA-E funds the development of technologies that, if technically successful, have clear disruptive potential, e.g., by demonstrating capability for manufacturing at competitive cost and deployment at scale.ARPA-E funds applied research and development. The Office of Management and Budget defines “applied research” as an “original investigation undertaken in order to acquire new knowledge…directed primarily towards a specific practical aim or objective” and defines “experimental development” as “creative and systematic work, drawing on knowledge gained from research and practical experience, which is directed at producing new products or processes or improving existing products or processes.”1 Applicants interested in receiving financial assistance for basic research (defined by the Office of Management and Budget as “experimental or theoretical work undertaken primarily to acquire new knowledge of the underlying foundations of phenomena and observable facts”)2 should contact the DOE’s Office of Science (http://science.energy.gov/). Office of Science national scientific user facilities (http://science.energy.gov/user-facilities/) are open to all researchers, including ARPA-E Applicants and awardees. These facilities provide advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. Projects focused on early-stage R&D for the improvement of technology along defined roadmaps may be more appropriate for support through the DOE applied energy offices including: the Office of Energy Efficiency and Renewable Energy (http://www.eere.energy.gov/), the Office of Fossil Energy and Carbon Management (https://www.energy.gov/fecm/office-fossil-energy-and-carbon-management), the Office of Nuclear Energy (http://www.energy.gov/ne/office-nuclear-energy), and the Office of Electricity (https://www.energy.gov/oe/office-electricity).SBIR/STTR PROGRAM OVERVIEWThe Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs are Government-wide programs authorized under Section 9 of the Small Business Act (15 U.S.C. § 638). The objectives of the SBIR program are to (1) stimulate technological innovation in the private sector, (2) strengthen the role of Small Business Concerns in meeting Federal R&D needs, (3) increase private sector commercialization of innovations derived from Federal R&D activities, (4) foster and encourage participation by socially and economically disadvantaged and women-owned Small Business Concerns, and (5) improve the return on investment from Federally funded research and economic benefits to the Nation. The objective of the STTR program is to stimulate cooperative partnerships of ideas and technologies between Small Business Concerns and partnering Research Institutions through Federally funded R&D activities.3ARPA-E administers a joint SBIR/STTR program in accordance with the Small Business Act and the SBIR and STTR Policy Directive issued by the U.S. Small Business Administration (SBA).4 ARPA-E provides SBIR/STTR funding in three phases (Phase I, Phase II, and Phase IIS).PROGRAM OVERVIEWThe goal of this FOA, entitled Unlocking Lasting Transformative Resiliency Advances by Faster Actuation of power Semiconductor Technologies (ULTRAFAST), is to advance the performance limits of silicon (Si), wide bandgap (WBG), and ultra-wide bandgap (UWBG) semiconductor devices5 and significantly improve their actuation methods to support a more capable, resilient, and reliable future grid. This new program seeks to engage technical experts from power electronics, optoelectronics, photonics, and other related fields to support the development of next-generation ultra-fast semiconductor devices and modules for enhanced resiliency, reliability, and control of power flow at all grid interfaces.ARPA-E expects that ULTRAFAST projects will create new material, device, and/or power module technologies that enable realization of transformative power management and control not only to enable a dramatically improved grid, but also for future autonomous power distribution systems such as those for electric vehicles, all-electric aviation, and others. More specifically, ARPA-E is looking for semiconductor material, device and/or power module level advances to enable faster switching and/or triggering at higher current and voltage levels for improved control and protection of the grid.The program will support the development of technologies that enable semiconductor devices and/or modules capable of operating at high switching frequencies, and featuring high slew-rates, current, and voltage levels while mitigating electromagnetic interference (EMI) issues.Specific categories include: (1) device and/or module technologies targeting protection functions at high current and voltage levels by achieving very fast by-pass, shunt, or interrupt capability at as low level of integration as possible with nanosecond-level reaction time (and corresponding slew rates). (2) high switching frequency devices and/or modules which enable efficient high-power, high-speed power electronics converters. These devices, depending on the power level, are required to switch between 1 kHz and 100 kHz in order to enable improved large-signal bandwidth of power converters for grid applications. Lastly, complementary technologies in category 3 such as wireless sensing of voltage and current, high-density packaging with the integrated wireless actuators and device/module-level protection, power cell-level capacitors and inductors, and thermal management strategies to support those in categories 1 and 2.This program supports ARPA-E mission goals to improve resilience, reliability, and security of energy infrastructure; improve energy efficiency; reduce greenhouse gas emissions; reduce reliance on energy imports; and maintain U.S. leadership in energy technologies.To view the FOA in its entirety, please visit https://arpa-e-foa.energy.gov.

https://www.grants.gov/web/grants/view-opportunity.html?oppId=346382
GRID OVERHAUL WITH PROACTIVE, HIGH-SPEED UNDERGROUNDING FOR RELIABILITY, RESILIENCE, AND SECURITY SBIR/STTR (GOPHURRS SBIR/STTR) $4,241,580.00

DE-FOA-0003048, SBIR/STTR Grid Overhaul with Proactive, High-speed Undergrounding for Reliability, Resilience, and Security (GOPHURRS) To obtain a copy of the Funding Opportunity Announcement (FOA) please go to the ARPA-E website at https://arpa-e-foa.energy.gov. To apply to this FOA, Applicants must register with and submit application materials through ARPA-E eXCHANGE (https://arpa-e-foa.energy.gov/Registration.aspx). For detailed guidance on using ARPA-E eXCHANGE, please refer to the ARPA-E eXCHANGE User Guide (https://arpa-e-foa.energy.gov/Manuals.aspx). ARPA-E will not review or consider concept papers submitted through other means. For problems with ARPA-E eXCHANGE, email ExchangeHelp@hq.doe.gov (with FOA name and number in the subject line). Questions about this FOA? Check the Frequently Asked Questions available at http://arpa-e.energy.gov/faq. For questions that have not already been answered, email ARPA-E-CO@hq.doe.gov. Agency Overview: The Advanced Research Projects Agency – Energy (ARPA-E), an organization within the Department of Energy (DOE), is chartered by Congress in the America COMPETES Act of 2007 (P.L. 110-69), as amended by the America COMPETES Reauthorization Act of 2010 (P.L. 111-358), as further amended by the Energy Act of 2020 (P.L. 116-260): “(A) to enhance the economic and energy security of the United States through the development of energy technologies that— (i) reduce imports of energy from foreign sources; (ii) reduce energy-related emissions, including greenhouse gases; (iii) improve the energy efficiency of all economic sectors; (iv) provide transformative solutions to improve the management, clean-up, and disposal of radioactive waste and spent nuclear fuel; and (v) improve the resilience, reliability, and security of infrastructure to produce, deliver, and store energy; and (B) to ensure that the United States maintains a technological lead in developing and deploying advanced energy technologies.” ARPA-E issues this Funding Opportunity Announcement (FOA) under its authorizing statute codified at 42 U.S.C. § 16538. The FOA and any cooperative agreements or grants made under this FOA are subject to 2 C.F.R. Part 200 as supplemented by 2 C.F.R. Part 910. ARPA-E funds research on, and the development of, transformative science and technology solutions to address the energy and environmental missions of the Department. The agency focuses on technologies that can be meaningfully advanced with a modest investment over a defined period of time in order to catalyze the translation from scientific discovery to early-stage technology. For the latest news and information about ARPA-E, its programs and the research projects currently supported, see: http://arpa-e.energy.gov/. ARPA-E funds transformational research. Existing energy technologies generally progress on established “learning curves” where refinements to a technology and the economies of scale that accrue as manufacturing and distribution develop drive improvements to the cost/performance metric in a gradual fashion. This continual improvement of a technology is important to its increased commercial deployment and is appropriately the focus of the private sector or the applied technology offices within DOE. By contrast, ARPA-E supports transformative research that has the potential to create fundamentally new learning curves. ARPA-E technology projects typically start with cost/performance estimates well above the level of an incumbent technology. Given the high risk inherent in these projects, many will fail to progress, but some may succeed in generating a new learning curve with a projected cost/performance metric that is significantly better than that of the incumbent technology. ARPA-E funds technology with the potential to be disruptive in the marketplace. The mere creation of a new learning curve does not ensure market penetration. Rather, the ultimate value of a technology is determined by the marketplace, and impactful technologies ultimately become disruptive – that is, they are widely adopted and displace existing technologies from the marketplace or create entirely new markets. ARPA-E understands that definitive proof of market disruption takes time, particularly for energy technologies. Therefore, ARPA-E funds the development of technologies that, if technically successful, have clear disruptive potential, e.g., by demonstrating capability for manufacturing at competitive cost and deployment at scale. ARPA-E funds applied research and development. The Office of Management and Budget defines “applied research” as an “original investigation undertaken in order to acquire new knowledge…directed primarily towards a specific practical aim or objective” and defines “experimental development” as “creative and systematic work, drawing on knowledge gained from research and practical experience, which is directed at producing new products or processes or improving existing products or processes.” Applicants interested in receiving financial assistance for basic research (defined by the Office of Management and Budget as “experimental or theoretical work undertaken primarily to acquire new knowledge of the underlying foundations of phenomena and observable facts”) should contact the DOE’s Office of Science (http://science.energy.gov/). Office of Science national scientific user facilities (http://science.energy.gov/user-facilities/) are open to all researchers, including ARPA-E Applicants and awardees. These facilities provide advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. Projects focused on early-stage R&D for the improvement of technology along defined roadmaps may be more appropriate for support through the DOE applied energy offices including: the Office of Energy Efficiency and Renewable Energy (http://www.eere.energy.gov/), the Office of Fossil Energy and Carbon Management (https://www.energy.gov/fecm/office-fossil-energy-and-carbon-management), the Office of Nuclear Energy (http://www.energy.gov/ne/office-nuclear-energy), and the Office of Electricity (https://www.energy.gov/oe/office-electricity). Program Overview: GOPHURRS (Grid Overhaul with Proactive, High-Speed Undergrounding for Reliability, Resilience, and Security) intends to fund a portfolio of new technologies based on bold and unconventional ideas that will transform the construction of underground medium voltage (MV, 5 – 46 kV) power distribution grids (e.g., primary feeders and laterals) in urban and suburban areas and reduce the cost of undergrounding electric power grids by at least 50% in order to improve the overall reliability, resilience, and security of power infrastructure in the United States. SAIDI (System Average Interruption Duration Index) and SAIFI (System Average Interruption Frequency Index) are two commonly used reliability metrics. In the United States today, SAIDI and SAIFI range approximately 5-8 hours and 1.5 times per customer, respectively, which is responsible for an economic cost to U.S. electricity consumers of $79 billion/year. Undergrounding powerlines is a proven way of improving the system reliability for both transmission and distribution grids as indicated in stark differences in SAIDI and SAIFI of overhead systems and underground systems (Figure 1). Despite the reliability benefits, the cost of burying distribution powerlines is significant, up to five to ten times that of overhead distribution lines, making it the major barrier to making such grid investment decisions. Furthermore, today's undergrounding processes pose safety concerns, such as damage to other buried utilities during construction, occupational safety and health hazards associated with tasks performed in a manhole, and lengthy surface disruptions and traffic detours affecting the safety of surrounding communities, making undergrounding a difficult project to undertake. The GOPHURRS program aims to reduce the time and cost required to underground by a factor of at least two when compared to traditional trenching-based methods. More specifically, GOPHURRS technologies will shift the paradigm of undergrounding from digging to drilling in order to leave the surface nearly untouched. In order to achieve this goal, GOPHURRS focuses on developing transformative technologies capable of achieving autonomous/trenchless utility installation, such as automated and rapid subsurface drilling along the terrain and concurrent conduit installation, while also avoiding hidden underground obstacles (e.g., existing infrastructure, geologic anomalies) with advanced look-ahead sensors (Figure 2). In addition, GOPHURRS aims to reduce the life cycle cost of an underground power system by developing reliable cable joint designs and installation systems, as cable joints are typically the first to fail during operation. The GOPHURRS program could reduce costs, increase speed, and improve the reliability and safety of undergrounding operations and the surrounding communities by developing such technologies focused on automation, damage prevention, and error elimination. To view the FOA in its entirety, please visit https://arpa-e-foa.energy.gov.

https://www.grants.gov/web/grants/view-opportunity.html?oppId=347220